A quasinilpotent operator with reflexive commutant

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-nilpotent Operator with Reflexive Commutant, Ii

A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. Norms ‖T n‖ converge to zero arbitrarily fast. Let H be a complex separable Hilbert space and let B(H) denote the algebra of all continuous linear operator on H. If T ∈ B(H) then {T}′ = {A ∈ B(H) : AT = TA} is called the commutant of T . By a subspace we always mean a closed linear subspace. If A ⊂ B(H...

متن کامل

On a weighted Toeplitz operator and its commutant

We study the structure of a class of weighted Toeplitz operators and obtain a description of the commutant of each operator in this class. We make some progress towards proving that the only operator in the commutant which is not a scalar multiple of the identity operator and which commutes with a nonzero compact operator is zero. The proof of the main statement relies on a conjecture which is ...

متن کامل

Some Problems concerning Reflexive Operator Algebras

We discuss below some problems concerning a certain class of algebras of operators on complex Banach space. Each algebra of the class arises from a lattice of subspaces of the underlying space (in a way that will soon be made precise) and most of the problems are of the fonn: find conditions, additional to those specified a priori, on the lattice of subspaces, which are both necessary and suffi...

متن کامل

Microspectral Analysis of Quasinilpotent Operators

We develop a microspectral theory for quasinilpotent linear operators Q (i.e., those with σ(Q) = {0}) in a Banach space. When such Q is not compact, normal, or nilpotent, the classical spectral theory gives little information, and a somewhat deeper structure can be recovered from microspectral sets in C. Such sets describe, e.g., semigroup generation, resolvent properties, power boundedness as ...

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1996

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-118-3-277-283